スキップしてメイン コンテンツに移動

海に行く理由

You have zero control over the ocean.
The only thing you have control over is your attitude and actions.


ぼくがカイトボードをはじめたのは、上場していた会社をMBOして、もう一度自分がやっていることを見直し、本当にやるべきことは何かを模索しはじめた頃だ。

自信もあったけど、不安はもっと大きかった。
それでも行動したのは、根拠は脆弱なんだけど「直感に従うなら、やらなければならない」という気持ちがぼくを動かしていたからだ。

そんな時、全くやったことのないことに挑戦してみようと思って、昔サンフランシスコで見たカイトボードをはじめた。

なんどもなんども、風と波に翻弄された。

あたりまえだけど、海も風も、人間なんて関係ない。
海の上では、海をコントロールできるわけもなく、自分をコントロールして海に遊ばせていただくだけだ。


あーだ、こーだと理屈をこね回している暇もなく
海と自分だけの世界
でも海は海なわけだから
なんだか無心な自分の中に入っていく感覚

でも、素晴らしいことにカイトボードは危険な側面もあるので
はじめて行った見ず知らずの場所であっても、カイトボーダー同士は助け合う

海の上で、無心な自分と向き合っているにもかかわらず
仲間がいる安心感を同時に感じる

そしてヘトヘトになるまで乗り倒した夕方
傾いた夕日が海をキラキラと照らし始めると、いつも思う。


あー、おれは何てちっぽけなことにクヨクヨしてたんだろう
人間なんて、小さな存在なんだな
だから、辛いこともあるかもしれないけれど、くじけずに努力を続ければ
いつかきっと、不可能だったことが可能になって
「できなかったこと」が「できる」に変わって
きっともっと前に進むことができる。

なんか、そんな気分になる。

きっとマリンスポーツをやっている人は、多かれ少なかれ、みんなそんな気分なんだと思う。

スポーツをしに行くというよりも、自分をリセットしにいく。
忘れそうになっていた何かを取り戻しにいく。


戦争から帰って来た退役軍人、人生に絶望して死んでいく人が多いのだと言う。
そうした人たちに、サーフィンを教えるプログラムがあるらしい。

海に向き合っているうちに、生きて行く意志を取り戻す。
そういうことだ。

彼らの過酷さは、ぼくなんて想像もできないレベルなんだろうけど
ぼくの色々もないまぜになって、深く心につきささる。


Netflixオリジナル作品「RESURFACE

はやく本編を見たい。

そして、海にいきたい。

コメント

このブログの人気の投稿

福岡ではじまる新たな動き「OPEN AI LAB」

ぼくたちは、福岡が本社だ。このエネルギーにあふれ、人の可能性を否定しない街は、ぼくたちのあらゆることの原点でもある。


だからこそ、福岡が刺激的に成長していくことは、ぼくたちにとって欠くべからざることなのだ。

テックパークという学童保育をやっていることも、九州経済産業局と一緒に地元製造業のために機械学習を学ぶ場を作ったことも、すべてそういう思いがあったから。

でも、もっと継続的に。地元企業同士が学び、知見を共有しあいながら、機械学習について研鑽を深め、事業を生み出していくことができたら。

実際、地元企業からとても多くの相談を受けるようになって、わずかなアドバイスでめちゃくちゃ画期的なサービスを完成させた人たちもいるし。そして、この土地は、周りと協力しあうことがとても好きな土地だし。

やっぱり機械学習は、理屈よりも実践だ。機械学習の権威が「無理じゃないかな」と言ったことが、やってみたら意外にも成果が出たこともある。

だから、まずは実践すること。迷わず実践してみて、成果が見込まれたら本格的に取り組めばいい。そしてこういうことは、一人で悶々と進めちゃダメだ。仲間と一緒に、あーだこーだ実験したり、成果を共有しあいながら進める。できるなら、会社も違い、業種も違う人たちと一緒に。そうなんだよ。こういうことが得意なのは、やっぱり福岡の人間だよな。そう思ったわけだ。

色々な思いがあって、ふくおかフィナンシャルグループの人たちと意気投合し、ざっくりとしたアイディアながら、高島市長も賛同してくれたし。

そして、いつもいろんな意見を交わしあっているソフトバンクが、「やるよ!」って男らしく笑顔とともに引き受けてくれたし、機械学習で世界を圧倒的にリードしているGoogleも、もちろんやりますよ。といってくれたし。

ということでスタートします。

オープンな場で、機械学習について学び、事業化に向けて実践していく場。
OPEN AI LAB

これはエンジニアの集まりではなく、事業家の集まり、ビジネスマンのためのもの。

そういう人たちが実践できるような、数々の手段や、事例や、ワークショップや。そういうものを通じて、理屈だけじゃなく、成功までの道筋を体感できるような。そんな活動をはじめます。

とびっきりの道具を使って、自分のビジネスに劇的な革新を起こしたい人は、ぜひここに集ってほしい。最高の体験を…

工場の不良品検査を機械学習で実現 BLOCKSに画像分類モデル登場

製造業にとっては、生産している商品が全てだ。


会社の体制も、工場の仕組みも、顧客の信頼を裏切らない商品を生産するために存在する。

工夫に工夫を重ね、素晴らしい精度で商品を生み出しているからこそ、商品のわずかな傷や、不良も見逃せない。

そんな製造業では、最終検品をベテラン社員が目視で行なっているところが非常に多い。


社員は製品を熟知しているし、新しい製品が出てきたとしても、少しレクチャーを受ければすぐにコツをつかむことができる。

でも、人間は疲れるし、体調だって崩すこともある。そして社会全体が人口減少なんだから、人手に頼っているのはコスト的にも、拡張性という点でもリスクだとも言える。

そんなことを考えてしまうと、例えばデジタルカメラの精度は人間の目をはるかに超えているわけだし、そんな作業はコンピュータに任せることはできないのか。そう思っている会社は極めて多い。

コンピュータを使って不良品を見つけ出す。

簡単なようでいて、これはなかなか難しい課題だ。

だって製品の仕様はコロコロ変わるわけだし、バリエーションもたくさんあったりする。

機械学習を使って判定させようとすると、新しい製品が出るたびに、新しい仕様が決まるたびに、新しく何千枚、何万枚と画像を撮影して学習させなければいけないとしたら、多分そんなことやってられない。

でも、もしも、わずか100枚くらいの画像を見せて、極めて高い精度の判定ができるとしたら。もしも学習が10分ちょっとで終わるとしたら。

そんなに簡単なら、新しい商品が登場するたびに、写真をとって学習させ、すぐに使ってみることができるだろう。

だから。



製造業のみなさん、おまたせしました。

そんなことを実現するMAGELLAN BLOCKSの新しい機械学習モデル「画像分類」がリリースされました。

新しい画像分類モデルは、転移学習という手法を使っており、あらかじめ世の中の様々な画像で物の見た目から特徴をつかむことを学習させてあります。だから不良の画像が100枚、正常の画像が100枚といった少ない枚数でも、不良という画像にはどんな特徴があるのかを、極めて高い精度で見つけ出し、判断することができるようになります。

使い方は簡単。

例えば良・不良の判定をしたいなら、goodというフォルダにgoodな画像を入れ、NGというフォルダにNGな画像を入れ。そしてBLOCK…

東京に縛られるな。福岡移住のすすめ。

九州の人には信じがたいことかもしれないけれど、東京の人たちは「どこの出身」とか「どこに本社がある」とかは、大して興味がない。そんなことより、その人、その人の感性、その人たちがやっていること、ポリシー。そういうことのほう興味があるし、重要だ。

でも、九州の人たちは、地元から来たとか、地元企業だというだけで、放っておけなくなる。

しかも、地元では「九州」というカテゴリはほとんど意味がないのに、東京に来た瞬間に「九州」は、大切な地元。九州全県出身者が、がぜん愛すべき地元出身者になるわけだ。



だから、ぼくは東京でのプレゼンで、「本社は福岡です。」「今日は福岡から来ました。」と呼びかけてみたりする。

呼びかけてみなくても、福岡に住んでいる間にしみついてしまった博多弁の片鱗が出てしまって

「あのですね」
「それでですね」
「ですからですね」

とか全く無自覚に言ってしまったりする。そうすると、なんかプレゼン終わった後にニヤニヤ近づいてくる人が必ずいる。

まー、つまりこういうことっていうのは、ある意味ボーナスポイントみたいなもんで、本当ならコンセプトで勝負し、中身で訴えなければならないのに、「地元」というプレゼントをもらってしまえる。図らずも心の友が登場する。という感じなんだな。

でも、それは今九州に住んでいる人のおかげというよりも、これまでの長い歴史の中で、先人たちが築きあげてきた文化だったりするわけだ。

そして素晴らしいことに、ぼくのように東京から移住した人間であっても、やっぱり地元なのであって、放っておけない仲間として扱ってくれる。

だから東京で最高のビジネス経験をした人は、例えば福岡に拠点を移し、そして福岡を飛び出して仕事を広げるのがおすすめ。どこへ行っても、愛すべき「地元」の仲間、先輩がいて、放っておけない気持ちでさりげなくアドバイスしてくれる。

そういう人は、東京から離れているとか離れてないとか、全く関係ないもんな。

デキるやつほど、東京に縛られるなよ。ということなんだけどな。