スキップしてメイン コンテンツに移動

ぼくらがTECH PARKをはじめる理由 (ちびっこたちの未来 の続き的な)

Groovenautsという会社は、IoTという切り口でMAGELLANというサービス提供をしている。このIoTという言葉、色んな人が色んな風に使っているから、「IoT」というだけでは大切なことは何も伝わらない。

なので、ぼくらが頑張っている「IoT」というヤツ。こいつは何かということなんだけど、それは普通の人の普通の生活が、科学技術のチカラを借りて、少しずつ楽しくなるというか、なんかワクワクした気分で毎日朝を迎えられる。そんな世の中をちょっとずつでも実現していきたい。そんな感じなんだよね。

こんな風に思っている気持ちが伝わるのかどうかわからないけれど、ぼくらに持ち込まれる話は、医療・電力・流通・金融の4分野が圧倒的に多くて。しかもほとんどが、新しい事業や、サービスを作っていく話で。なんかどれもみんなの生活にかかわっていることばかり。

テクノロジーというやつは、時としてそれ自体が目的化しがち。で、目的化したテクノロジーは、テクノロジーの枠を超えるのが難しくって、だから、そことつながっているはずの人々の喜びとか悔しさとか、そういうことから無縁になってしまい、いったい何のためにやってるんだっけ。みたいな感じになってしまう。

でもやっぱり、ぼくらが目指しているのは、普通の人の生活を、楽しく・ワクワクすることなんだから、普通の人のちょっと辛い気持ちとか、困っていることとかに敏感じゃなきゃいけない。そう思うんだよ。

だから、テクノロジーカンパニーのGroovenautsが、どうして学童保育をはじめるのか。どうしてファボラボをやるのか。そういうことに対するこたえなんだけど、身近な、そう、ぼくらが生きている身近な社会の課題に対して、ぼくらなりに敏感でいようということの宣言みたいなもんなんだな。


科学技術という道具は、生活を豊かにするチカラを持っているし、ちゃんと付き合えばとても楽しいし、夢みたいなことをカタチにするチカラも、(ちょっと頑張んなきゃいけないけど)持っていると思うんだよ。


だから、一つはTECH PARK KIDS。これは、小学生を対象にした学童保育。


学校でも家庭でもできないことにこだわってる。だから、順位をつけたり、成績表をつけたりなんかしない。楽しいことをとことんまでやればいい。だって、こどもなんだから。

でも、コンテンツは最高のものを準備して、上質な経験をしてもらうよ。

プログラミングで遊べるし、ロボット作りもできるようになる。どの道具も、ぼくらみたいな専門家が見て、最高と思えるものばかりを準備するからね。

「テクノロジーを学ぶ」のではなく、「テクノロジーで遊ぶ」

そんな体験を、学童保育という長い時間の中で、ゆっくり、じっくり、遊びを通じて体得してもらえればいい。

これからの未来は、プログラミングもそうだけど、コンピュータテクノロジを知っていたら、他の人ができないようなビジネスを作る起業家になれるかもしれないし、みんながワクワクするようなお店を経営できるかもしれない。そう、こどもたちが未来をつくる。こどもたちの未来がワクワクする。そんなこどもたちを見ていて、おとうさんもおかあさんもワクワクして、みんながワクワクする。

そういうことなんだな。


もう一つは、TECH PARK MAKERS。これは、ものづくりを支援する工房みたいなやつ。


今の時代、3Dプリンタだとかレーザーカッターとかオープンハードウェアだとか。ものづくりはとても簡単になってきた。

でも、どうやって使ったらいいかわかんないし、聞きたいけど教えてくれる人もいないし。だから、そういう場所を提供する。デバイス絡みだけじゃなくて、クラウドだって使えるし、人工知能の使い方も教えちゃうよ。

そんなこと言うと、なんかむずかしそうな感じだけど、電子ミシンとかもおいてあるから、こどものために体操着に刺繍してあげたい。とか、そういうこともできるように準備している。ママのためのモノづくり。ね。

もちろん本格的にモノを作って、なんかビジネスにまでつなげていきたいと思っている人も応援してる。そういう人のために、世界中の投資家とも話をしていて、まだまだ最初の試作ができたレベルでの投資(つまりseed moneyってやつね)。そういうのも準備中。

事業化を目指している人も、趣味を突き詰めたいだけの人も、そういう人のワクワクしたい気持ちを持続できるように、いろいろやっていくから。楽しみにしてね。

で、この2つの空間は、ぼくらGroovenautsのオフィスと、透明なガラスの壁を隔ててつながっている。

これ、もうひとつ大切にしたかったこと。

昔はさ、こどものそばに大人がいて、大人のそばにこどもがいたよね。自分のこどもじゃなくても、大人とこどもが声をかけあっていた。

それがいつの間にか、外で遊べなくなっちゃったし、こどもはこども。大人は大人で。

Groovenautsの社員は、ぼくが言うのも変だけど、すっごく優秀で、すっごくイイやつばかり。で、そういう社員から見えるところに、ロボット作りを頑張っているこどもがいて、MAKERSで頑張ってモノづくりしている人がいて。

大人だって頑張ってるし、こどもだって頑張ってるし。大人も悩むし、こどもも悩んでるんだし。

だからさ。そういうことなんだよ。

ぼくなんか、時々こどもに「おっちゃん、がんばってるね」とか、言ってもらいたいもんね。

つまり、こういう空間というか、こういう取り組みというか、そういう些細なことかもしれないけれど、ひとつひとつが、結局ぼくらを成長させるし、強くしていく。

これが、ぼくらなりのIoTだし、ぼくらなりの取り組み方。

これが、ぼくらがTECH PARKをはじめる理由。ぼくらなりのビジネスへの取り組み方。

コメント

このブログの人気の投稿

福岡ではじまる新たな動き「OPEN AI LAB」

ぼくたちは、福岡が本社だ。このエネルギーにあふれ、人の可能性を否定しない街は、ぼくたちのあらゆることの原点でもある。


だからこそ、福岡が刺激的に成長していくことは、ぼくたちにとって欠くべからざることなのだ。

テックパークという学童保育をやっていることも、九州経済産業局と一緒に地元製造業のために機械学習を学ぶ場を作ったことも、すべてそういう思いがあったから。

でも、もっと継続的に。地元企業同士が学び、知見を共有しあいながら、機械学習について研鑽を深め、事業を生み出していくことができたら。

実際、地元企業からとても多くの相談を受けるようになって、わずかなアドバイスでめちゃくちゃ画期的なサービスを完成させた人たちもいるし。そして、この土地は、周りと協力しあうことがとても好きな土地だし。

やっぱり機械学習は、理屈よりも実践だ。機械学習の権威が「無理じゃないかな」と言ったことが、やってみたら意外にも成果が出たこともある。

だから、まずは実践すること。迷わず実践してみて、成果が見込まれたら本格的に取り組めばいい。そしてこういうことは、一人で悶々と進めちゃダメだ。仲間と一緒に、あーだこーだ実験したり、成果を共有しあいながら進める。できるなら、会社も違い、業種も違う人たちと一緒に。そうなんだよ。こういうことが得意なのは、やっぱり福岡の人間だよな。そう思ったわけだ。

色々な思いがあって、ふくおかフィナンシャルグループの人たちと意気投合し、ざっくりとしたアイディアながら、高島市長も賛同してくれたし。

そして、いつもいろんな意見を交わしあっているソフトバンクが、「やるよ!」って男らしく笑顔とともに引き受けてくれたし、機械学習で世界を圧倒的にリードしているGoogleも、もちろんやりますよ。といってくれたし。

ということでスタートします。

オープンな場で、機械学習について学び、事業化に向けて実践していく場。
OPEN AI LAB

これはエンジニアの集まりではなく、事業家の集まり、ビジネスマンのためのもの。

そういう人たちが実践できるような、数々の手段や、事例や、ワークショップや。そういうものを通じて、理屈だけじゃなく、成功までの道筋を体感できるような。そんな活動をはじめます。

とびっきりの道具を使って、自分のビジネスに劇的な革新を起こしたい人は、ぜひここに集ってほしい。最高の体験を…

工場の不良品検査を機械学習で実現 BLOCKSに画像分類モデル登場

製造業にとっては、生産している商品が全てだ。


会社の体制も、工場の仕組みも、顧客の信頼を裏切らない商品を生産するために存在する。

工夫に工夫を重ね、素晴らしい精度で商品を生み出しているからこそ、商品のわずかな傷や、不良も見逃せない。

そんな製造業では、最終検品をベテラン社員が目視で行なっているところが非常に多い。


社員は製品を熟知しているし、新しい製品が出てきたとしても、少しレクチャーを受ければすぐにコツをつかむことができる。

でも、人間は疲れるし、体調だって崩すこともある。そして社会全体が人口減少なんだから、人手に頼っているのはコスト的にも、拡張性という点でもリスクだとも言える。

そんなことを考えてしまうと、例えばデジタルカメラの精度は人間の目をはるかに超えているわけだし、そんな作業はコンピュータに任せることはできないのか。そう思っている会社は極めて多い。

コンピュータを使って不良品を見つけ出す。

簡単なようでいて、これはなかなか難しい課題だ。

だって製品の仕様はコロコロ変わるわけだし、バリエーションもたくさんあったりする。

機械学習を使って判定させようとすると、新しい製品が出るたびに、新しい仕様が決まるたびに、新しく何千枚、何万枚と画像を撮影して学習させなければいけないとしたら、多分そんなことやってられない。

でも、もしも、わずか100枚くらいの画像を見せて、極めて高い精度の判定ができるとしたら。もしも学習が10分ちょっとで終わるとしたら。

そんなに簡単なら、新しい商品が登場するたびに、写真をとって学習させ、すぐに使ってみることができるだろう。

だから。



製造業のみなさん、おまたせしました。

そんなことを実現するMAGELLAN BLOCKSの新しい機械学習モデル「画像分類」がリリースされました。

新しい画像分類モデルは、転移学習という手法を使っており、あらかじめ世の中の様々な画像で物の見た目から特徴をつかむことを学習させてあります。だから不良の画像が100枚、正常の画像が100枚といった少ない枚数でも、不良という画像にはどんな特徴があるのかを、極めて高い精度で見つけ出し、判断することができるようになります。

使い方は簡単。

例えば良・不良の判定をしたいなら、goodというフォルダにgoodな画像を入れ、NGというフォルダにNGな画像を入れ。そしてBLOCK…

東京に縛られるな。福岡移住のすすめ。

九州の人には信じがたいことかもしれないけれど、東京の人たちは「どこの出身」とか「どこに本社がある」とかは、大して興味がない。そんなことより、その人、その人の感性、その人たちがやっていること、ポリシー。そういうことのほう興味があるし、重要だ。

でも、九州の人たちは、地元から来たとか、地元企業だというだけで、放っておけなくなる。

しかも、地元では「九州」というカテゴリはほとんど意味がないのに、東京に来た瞬間に「九州」は、大切な地元。九州全県出身者が、がぜん愛すべき地元出身者になるわけだ。



だから、ぼくは東京でのプレゼンで、「本社は福岡です。」「今日は福岡から来ました。」と呼びかけてみたりする。

呼びかけてみなくても、福岡に住んでいる間にしみついてしまった博多弁の片鱗が出てしまって

「あのですね」
「それでですね」
「ですからですね」

とか全く無自覚に言ってしまったりする。そうすると、なんかプレゼン終わった後にニヤニヤ近づいてくる人が必ずいる。

まー、つまりこういうことっていうのは、ある意味ボーナスポイントみたいなもんで、本当ならコンセプトで勝負し、中身で訴えなければならないのに、「地元」というプレゼントをもらってしまえる。図らずも心の友が登場する。という感じなんだな。

でも、それは今九州に住んでいる人のおかげというよりも、これまでの長い歴史の中で、先人たちが築きあげてきた文化だったりするわけだ。

そして素晴らしいことに、ぼくのように東京から移住した人間であっても、やっぱり地元なのであって、放っておけない仲間として扱ってくれる。

だから東京で最高のビジネス経験をした人は、例えば福岡に拠点を移し、そして福岡を飛び出して仕事を広げるのがおすすめ。どこへ行っても、愛すべき「地元」の仲間、先輩がいて、放っておけない気持ちでさりげなくアドバイスしてくれる。

そういう人は、東京から離れているとか離れてないとか、全く関係ないもんな。

デキるやつほど、東京に縛られるなよ。ということなんだけどな。