スキップしてメイン コンテンツに移動

ワタミ、「渡邉」不在では回らなかったという当たり前


色々と言われがちなワタミだけど、ぼく自身は関連の飲み屋にほとんど行ったことがないので、好きか嫌いかと言われれば「どちらでもない」というか「よく知らない」。でも間違いないのは、ゼロから創業して売上高1,500億円まで持って行ったんだから、すごい才覚がある人なんだと思う。

で、昨日の日経ビジネス。「渡邉不在では回らなかった
http://business.nikkeibp.co.jp/atcl/interview/15/269473/121100022/

まぁ、なんというか。あんな才覚のある人でもこれなんだと、なんかザラザラした気分になった。

わずかな仲間と会社を創業。しかも他の会社がやらないようなことに挑戦して。だからこそ自分の信念を信じて、いつか自分の会社は、大きく成長して社会の多くの人びとから賞賛される。

たいていのベンチャー的創業者は、こんなことを考えながら創業し、経営してると思うんだ。

自分と仲間を信じて。チンケな未来じゃなく、なんか理想的なところに到達してやるんだ。と、強く信じて。

そんな風に、ほかに埋没せずに頑張り続けていると、それはそれなりに独自のビジネス感覚というか、時代感みたいなのを掴み始める。だってビジネスは、仮説と検証をひたすら繰り返すものだと言えるからね。

で、とにかく頑張って。経営者なんだから、嫌なことなんて山ほどあるし。それでもいちいちくじけてるわけにいかないし。結局自分の信念だけが拠り所みたいな状態。それでも衰えない情熱みたいなもので頑張り続ける。

そういうことができると、繰り返す「仮説・検証」が自分を導いてくれて。そこに若干の才覚があると、事業は成長をはじめる。

で、そんな風に成長しはじめると、世間的には放っておかない。
メディアをはじめ、いろいろと取り上げられ始めるわけだ。

ここらへんがスタートアップ企業の、本当の試練の始まりというところじゃないかと。

つまりそういうユニークな経営者は、メディアとかイベントとか、そういう側からすると面白いので取り上げたい。

経営者側は、自分が取り上げられることで会社の認知度があがり、ビジネスにもプラスになると思いはじめる。ここらへんは、創業してからの悔しさというか、認められなかった経験というか。いったん何かを失ったような気分になって、そこから這い上がろうとしているというか。そういう人ほど、こういう自分に脚光があたってくることを望むんだと思う。

まぁ、その人のビジネス感というか、考えというか、そういうものが聞くべきものをもっていればいるほど、その経営者に脚光があたり、注目があつまり、メディアがとりあげ、イベントに呼ばれ、懇親会で人と会い、パーティに呼ばれ、人脈は広がり。そして、こういう流れが、スパイラルにレベルが上がっていって。

当たり前だけど、こんな風になればなるほど会社に割く時間は短くなっていく。だってこれは、経営者のスター化であり、経済というかエンターテイメントの時間なわけで。だからこそ同じようなことを言ってるとエンターテイメント的にはつまらなくなるので、いろいろ頑張って注目を浴びるに値する状態を作り出したりする。イベントを主催したり、パネルに出たり。などなど。

こんなことやっていたら時間の問題もあるけど、気持ちのシェアが落ちていく。

それまでは、会社の些細なことまで心を砕くことができたんだけど、だんだんそれができなくなっていく。でも、会社をそこまで大きくできたなら、自分と思いを同じくする仲間がいるはずで、だんだんそいつに「ちゃんとやっといてくれよ」という流れになる。

でもね。間違っちゃいけない。そんな優秀な仲間がいたとしても、その人は、あなたの情熱とか、頑張っている姿勢を信じて頑張ってきたわけだから。

結局、急成長する企業の経営者って、ほかの人が簡単に代わりをできるわけがない。経営者に会社決定のほとんどが集中してたっていいじゃないか。普通の会社とは違うと言われたっていいじゃないか。

問題は、社会(顧客と言うところかもだけど、やっぱり社会だと思う)から望まれることをやっているか、そしてそこにビジネスはあるのか。この2点だと思うんだよ。

「いつか社会から賞賛される会社にしたい」という気持ちは大切だし、そうすべきだと思う。でも、そのために「世間の当たり前とは違うこと」を信じてやってきたからこそ成長したわけで、そのリーダーが現場から離れてしまい、しかも「世間的な当たり前」を目指してしまうと、その会社の根っこみたいなものがなくなってしまうというか。情熱の炎を燃やし続けてきた燃料が尽きるというか。そういうことじゃないかと思うんだよな。

ワタミ関連のお店にほとんど行ったことがないので、ワタミを離れてよくあるベンチャー企業の話として書いたので、現実とはちょっと違うとは思う。でも渡邉社長がどういう人であれ、これまでの努力は容易に想像できるのであって、それがこんな風に瓦解していくのは、忍びないというか。まぁ、きっとここからもう一度立て直すんだと思うけどね。大変だってやんなきゃいけない。それが創業者だし、経営者だし。

まー、ほとんど自分に言ってるんだけどね。

コメント

このブログの人気の投稿

福岡ではじまる新たな動き「OPEN AI LAB」

ぼくたちは、福岡が本社だ。このエネルギーにあふれ、人の可能性を否定しない街は、ぼくたちのあらゆることの原点でもある。


だからこそ、福岡が刺激的に成長していくことは、ぼくたちにとって欠くべからざることなのだ。

テックパークという学童保育をやっていることも、九州経済産業局と一緒に地元製造業のために機械学習を学ぶ場を作ったことも、すべてそういう思いがあったから。

でも、もっと継続的に。地元企業同士が学び、知見を共有しあいながら、機械学習について研鑽を深め、事業を生み出していくことができたら。

実際、地元企業からとても多くの相談を受けるようになって、わずかなアドバイスでめちゃくちゃ画期的なサービスを完成させた人たちもいるし。そして、この土地は、周りと協力しあうことがとても好きな土地だし。

やっぱり機械学習は、理屈よりも実践だ。機械学習の権威が「無理じゃないかな」と言ったことが、やってみたら意外にも成果が出たこともある。

だから、まずは実践すること。迷わず実践してみて、成果が見込まれたら本格的に取り組めばいい。そしてこういうことは、一人で悶々と進めちゃダメだ。仲間と一緒に、あーだこーだ実験したり、成果を共有しあいながら進める。できるなら、会社も違い、業種も違う人たちと一緒に。そうなんだよ。こういうことが得意なのは、やっぱり福岡の人間だよな。そう思ったわけだ。

色々な思いがあって、ふくおかフィナンシャルグループの人たちと意気投合し、ざっくりとしたアイディアながら、高島市長も賛同してくれたし。

そして、いつもいろんな意見を交わしあっているソフトバンクが、「やるよ!」って男らしく笑顔とともに引き受けてくれたし、機械学習で世界を圧倒的にリードしているGoogleも、もちろんやりますよ。といってくれたし。

ということでスタートします。

オープンな場で、機械学習について学び、事業化に向けて実践していく場。
OPEN AI LAB

これはエンジニアの集まりではなく、事業家の集まり、ビジネスマンのためのもの。

そういう人たちが実践できるような、数々の手段や、事例や、ワークショップや。そういうものを通じて、理屈だけじゃなく、成功までの道筋を体感できるような。そんな活動をはじめます。

とびっきりの道具を使って、自分のビジネスに劇的な革新を起こしたい人は、ぜひここに集ってほしい。最高の体験を…

工場の不良品検査を機械学習で実現 BLOCKSに画像分類モデル登場

製造業にとっては、生産している商品が全てだ。


会社の体制も、工場の仕組みも、顧客の信頼を裏切らない商品を生産するために存在する。

工夫に工夫を重ね、素晴らしい精度で商品を生み出しているからこそ、商品のわずかな傷や、不良も見逃せない。

そんな製造業では、最終検品をベテラン社員が目視で行なっているところが非常に多い。


社員は製品を熟知しているし、新しい製品が出てきたとしても、少しレクチャーを受ければすぐにコツをつかむことができる。

でも、人間は疲れるし、体調だって崩すこともある。そして社会全体が人口減少なんだから、人手に頼っているのはコスト的にも、拡張性という点でもリスクだとも言える。

そんなことを考えてしまうと、例えばデジタルカメラの精度は人間の目をはるかに超えているわけだし、そんな作業はコンピュータに任せることはできないのか。そう思っている会社は極めて多い。

コンピュータを使って不良品を見つけ出す。

簡単なようでいて、これはなかなか難しい課題だ。

だって製品の仕様はコロコロ変わるわけだし、バリエーションもたくさんあったりする。

機械学習を使って判定させようとすると、新しい製品が出るたびに、新しい仕様が決まるたびに、新しく何千枚、何万枚と画像を撮影して学習させなければいけないとしたら、多分そんなことやってられない。

でも、もしも、わずか100枚くらいの画像を見せて、極めて高い精度の判定ができるとしたら。もしも学習が10分ちょっとで終わるとしたら。

そんなに簡単なら、新しい商品が登場するたびに、写真をとって学習させ、すぐに使ってみることができるだろう。

だから。



製造業のみなさん、おまたせしました。

そんなことを実現するMAGELLAN BLOCKSの新しい機械学習モデル「画像分類」がリリースされました。

新しい画像分類モデルは、転移学習という手法を使っており、あらかじめ世の中の様々な画像で物の見た目から特徴をつかむことを学習させてあります。だから不良の画像が100枚、正常の画像が100枚といった少ない枚数でも、不良という画像にはどんな特徴があるのかを、極めて高い精度で見つけ出し、判断することができるようになります。

使い方は簡単。

例えば良・不良の判定をしたいなら、goodというフォルダにgoodな画像を入れ、NGというフォルダにNGな画像を入れ。そしてBLOCK…

東京に縛られるな。福岡移住のすすめ。

九州の人には信じがたいことかもしれないけれど、東京の人たちは「どこの出身」とか「どこに本社がある」とかは、大して興味がない。そんなことより、その人、その人の感性、その人たちがやっていること、ポリシー。そういうことのほう興味があるし、重要だ。

でも、九州の人たちは、地元から来たとか、地元企業だというだけで、放っておけなくなる。

しかも、地元では「九州」というカテゴリはほとんど意味がないのに、東京に来た瞬間に「九州」は、大切な地元。九州全県出身者が、がぜん愛すべき地元出身者になるわけだ。



だから、ぼくは東京でのプレゼンで、「本社は福岡です。」「今日は福岡から来ました。」と呼びかけてみたりする。

呼びかけてみなくても、福岡に住んでいる間にしみついてしまった博多弁の片鱗が出てしまって

「あのですね」
「それでですね」
「ですからですね」

とか全く無自覚に言ってしまったりする。そうすると、なんかプレゼン終わった後にニヤニヤ近づいてくる人が必ずいる。

まー、つまりこういうことっていうのは、ある意味ボーナスポイントみたいなもんで、本当ならコンセプトで勝負し、中身で訴えなければならないのに、「地元」というプレゼントをもらってしまえる。図らずも心の友が登場する。という感じなんだな。

でも、それは今九州に住んでいる人のおかげというよりも、これまでの長い歴史の中で、先人たちが築きあげてきた文化だったりするわけだ。

そして素晴らしいことに、ぼくのように東京から移住した人間であっても、やっぱり地元なのであって、放っておけない仲間として扱ってくれる。

だから東京で最高のビジネス経験をした人は、例えば福岡に拠点を移し、そして福岡を飛び出して仕事を広げるのがおすすめ。どこへ行っても、愛すべき「地元」の仲間、先輩がいて、放っておけない気持ちでさりげなくアドバイスしてくれる。

そういう人は、東京から離れているとか離れてないとか、全く関係ないもんな。

デキるやつほど、東京に縛られるなよ。ということなんだけどな。